

OLSA Integration Guide
v1.0

Copyrights

Copyright © 2006 SkillSoft Corporation.
All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of SkillSoft Corporation.
Printed in the United States of America

SkillSoft Corporation
107 Northeastern Blvd.
Nashua, NH 03062
603-324-3000
87-SkillSoft (877-545-5763)
Information@SkillSoft.com

Trademarks

"Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries."

Dreamweaver® is a registered trademark of Macromedia, Inc. in the United States and/or other countries.

Adobe and PhotoShop® are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other
countries.

Sound Forge ® Audio Studio™ and Sound Forge ® 7.0are trademarks or registered trademarks of Sony Pictures Digital Inc. or its affiliates
in the United States and other countries."

Mozilla Firefox™ and the Firefox logo are trademarks of The Mozilla Foundation.

All trademarks appearing on the Netscape Network are the property of their respective owners, including, in some instances, the Netscape
Network and its affiliates, including, without limitation, Netscape Communications Corporation and America Online, Inc.

The term "Linux" is a registered trademark of Linus Torvalds, the original author of the Linux kernel.
"Sun, Sun Microsystems, Sun JVM/JRE, logos, are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries."

All other names and trademarks are the property of their respective owners.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including Photocopying or recording, for any purpose without the express written permission of
SkillSoft Corporation.

This document is provided for information only. SkillSoft makes no warranties of any kind regarding the SkillSoft software, except as set
forth in the license agreement. The SkillSoft software is the exclusive property of SkillSoft and is protected by United States and
International copyright laws. Use of the software is subject to the terms and conditions set out in the accompanying license agreement.
Installing the software signifies your agreement to the terms of the license agreement.

 Page 2 of 70

Table of Contents

Introduction...5
What is OLSA?... 5

Technical Considerations..6
Web Services and Launch URLs.. 7
SOAP Faults (Error conditions) ... 7
Synchronizing Server Clocks .. 8
Automatic User Registration or Update .. 8

Asset Integration Service (AI_) ...11
AI_InitiateAssetMetaData...13
AI_PollForAssetMetaData ...18
AI_AcknowledgeAssetMetaData...18
AI_InitiateFullCourseListingReport ...19
AI_CreateAssetGroup ..21
AI_EditAssetGroup ..22
AI_DeleteAssetGroup...23
AI_AddAssetToGroup...23
AI_RemoveAssetFromGroup ...24
AI_InitiateMakeChangesVisible..24

Search & Learn Service (SL_)...25
SL_FederatedSearch..29
SL_DetailedSearch ..30
SL_RelatedSearch ...31
SL_PaginateSearch..32
SL_GetAttributes...33
SL_GetSearchParameter ..34
SL_SetSearchParameter...34
SL_GetAssetDetail...35

Assignment Service (AS_)..36
AS_GetSubscriptionData ..36
AS_SetCollectionAssignment...37
AS_SetCollectionAssignmentByUser ...38
AS_GetCollectionAssignment ..38
AS_GetCollectionAssignmentByUser...39
AS_SetCatalogAssignment..40
AS_SetCatalogAssignmentByUser..40
AS_GetCatalogAssignment ...41
AS_GetCatalogAssignmentByUser..42

User Management Service (UM_) ...43
UM_CreateUser...43
UM_EditUser ..44

 Page 3 of 70

UM_DeleteUser ...44
UM_CreateUserGroup ..45
UM_EditUserGroup ..45
UM_DeleteUserGroup...46
UM_AddUserToGroup...46
UM_RemoveUserFromGroup ...47
UM_ InitiateUserListingByGroupReport ...47

Offline Integration Service (OF_)...50
OF_GetDownloadAssetUrl ...50
OF_GetUploadOfflineDataUrl ...51

Usage Data Synchronization Service (UD_)..52
UD_GetAssetResults ..52
UD_InitiateCustomReportByUsers..53
UD_InitiateCustomReportByUserGroups ...54

SignOn Service (SO_)...55
SO_GetMultiActionOnSignOnURL ...55

Utility Service (UTIL_) ...56
UTIL_PollForReport..56
UTIL_GetMentoringUrl ...56
bUTIL_DeleteReport ..57

Configuration Service (CF_) ...58
CF_GetAiccSettings ...58
CF_SetAiccSettings ...59
CF_GetPlayerProperties..59
CF_SetPlayerProperties ..60
CF_GetSkillSimProperties ...61
CF_SetSkillSimProperties ...62

Open Learning Services Portal (OLSP) ...64
Overview ...64
Login Page ...64
AICC Configuration Options ..65
Course Catalog Hierarchy ...67
Download Course Metadata ..69

 Page 4 of 70

Introduction

What is OLSA?

Open Learning Services Architecture (OLSA) is a comprehensive service oriented architecture
initiative that is intended to simplify the effort required to integrate SkillSoft learning services with
your Learner Management System(LMS) or portal of choice.

Why Integrate Using OLSA?

The following scenarios illustrate some of the benefits of using OLSA.

 AICC Compliant LMS
Your AICC compliant LMS integrates with OLSA. The LMS uses the Asset Integration
Service to automate the first time installation and periodic updating of SkillSoft hosted
content that it is entitled to. The Asset Integration service provides AICC install files for
SkillSoft hosted content, and the LMS uses standard AICC mechanisms to natively install,
launch, and track SkillSoft hosted content. The LMS also uses the Search & Learn service
to provide an enhanced search environment for content installed via the Asset Integration
service. Your LMS users can natively access SkillSoft hosted content from their catalog as
well as from search results returned by the Search-and-Learn service. Usage data in these
situations are seamlessly sent to the LMS via AICC mechanisms.

 Web Portal
Your web portal integrates with OLSA. The portal is not AICC compliant, but it can still use
the Asset Integration Service to retrieve the asset ID list of SkillSoft hosted content that it
is entitled to. The portal uses the SignOn service to launch SkillSoft hosted content by
asset ID. The portal uses the Offline service to provide offline-play access to SkillSoft
hosted content by asset ID. The portal can use the Search & Learn service as well,
providing launch access to content using OLSA-based launch URLs embedded in the
search results. Usage data in these situations are automatically managed by OLSA. The
portal uses the Usage Data Synchronization service to present OLSA managed usage data
to its users.

The term customer-application refers to either an LMS or portal as described above. In situations
where a distinction is appropriate, this document will refer explicitly to either an LMS or a portal.

 Page 5 of 70

 Technical Considerations

A customer-application using the OLSA Web Services has an associated customer-context defined in
the OLSA Environment. This implies that the full-capabilities of the OLSA environment admin
system are available for performing configuration functions not available through the OLSA Web
Services.

The OLSA Web Services provides a single WSDL file that specifies all of its services (see the OLSA
WSDL file for complete details on the APIs described in this guide).

 The OLSA Web Services is based on SOAP 1.2 bindings.

 The OLSA Web Services is available using either HTTP or HTTPS.

 The OLSA Web Services is only available initially as a SkillSoft hosted feature.

 This document assumes the reader has working knowledge of Web Services, AICC, and
other web application technologies including SOAP, HTTP and HTTPS.

Security

The OLSA Web Services supports authentication using an OASIS specification named
UsernameToken with the WSS: SOAP Message Security. This OASIS specification can be found at:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf.

The OLSA Web Services optionally supports HTTPS to further secure the communication between
the customer-application and the OLSA.

Additional References

 OLSA WSDL file: This is the precise description of the OLSA Web Service API specified in
the Web Services Description Language (WSDL).

 OLSA Release Notes: Description of new features, changes to existing features, bug fixes
and known issues with each OLSA release.

 OLSA Integration Kit Readme: The readme provides a description of Integration Kit
components, system and software requirements, set-up instructions, and client code
examples.

 Page 6 of 70

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

Web Services and Launch URLs

The OLSA Web services are for server-to-server communication only. Do not implement browser-
based user interfaces that allow direct access to the OLSA Web service. The user interface should
always send requests back to the customer-application, and the customer-application should issue
the actual OLSA Web service call.

Some OLSA Web service calls return a launch URL. Launch URLs are for accessing training content
or for accessing the OLSA environment. In either case, launch URLs may be embedded in user
interfaces but not the OLSA Web service call that returns them. A launch URL is secured with an
OLSA session id that is time-limited (usually several hours) and is user-specific. A launch URL
should not be persisted for long-term storage it should be used as soon as it is received by the
customer-application. A launch URL should be treated as an opaque value (its format and contents
are subject to change from one release of OLSA to another).

The following example illustrates these points:

1. A user logs in to the customer-application via a Web browser client. The customer-
application presents its UI in the Web browser client.

2. On the UI there is a link to access some feature in the OLSA environment. The user clicks
the link.

3. The link turns into a JavaScript openWindow call to create a new browser window on the
client that contains the result of the request. This first client request is sent to the
customer-application.

4. The customer-application receives the first request from the client and makes the
appropriate server-to-server OLSA Web service call. The call returns a launch URL that has
an associated session id (time-limited and specific to the user).

5. The customer-application returns a response to the first client request (a JavaScript
sequence that does a redirect to the launch URL).

6. The new window processes the response (the redirect JavaScript). The redirect JavaScript
is executed on the client and processes the launch URL. The launch URL sends a second
client request that is now sent to OLSA. OLSA returns the appropriate response (HTML in
this case) and the response is now rendered in the new window.

SOAP Faults (Error conditions)

OLSA Web Service functions return SOAP faults when error conditions arise. All OLSA Web Service
functions return the following SOAP fault types:

 GeneralFault: This is a catch-all fault type for any error condition that is not specifically
outlined in the specification for a given function. This also includes authentication failures.
The GeneralFault contains a detailed message on the nature of the error.

 Page 7 of 70

Synchronizing Server Clocks

OLSA implements the Web Services Security Username Token Profile 1.0 described in the following
document:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

This security specification recommends that any web service provider reject any request whose
creation time is older than five minutes. SkillSoft Hosting ensures that OLSA synchronizes with an
atomic clock. The customer must also synchronize their server application environment with an
atomic clock to avoid any time out issues.

If the server application environment is not synchronized with the web service the user would see
the following exception:

System.Web.Services.Protocols.SoapException: WSDoAllReceiver: security processing
failed; nested exception is:

org.apache.ws.security.WSSecurityException: An error was discovered processing the
header. (WSSecurityEngine: Invalid timestamp The security semantics of message have
expired) at
System.Web.Services.Protocols.SoapHttpClientProtocol.ReadResponse(SoapClient Message
message, WebResponse response, Stream responseStream, Boolean asyncCall) at
System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke(StringmethodName,
Object[] parameters)

Automatic User Registration or Update

Automatic user registration or update is supported by the OLSA Web Services to synchronize user
information between itself and the customer-application. Several of the OLSA Web Service functions
support this capability in addition to performing its primary function. This capability is often
convenient for situations where making two Web service calls (one for registering or updating the
user, and the other for performing the specific desired action) has unacceptable performance or
integration-implementation issues.

The OLSA Web Services offer two options for automatic-user-registration-update. OLSA Web
Service functions with this capability are detailed in this document and indicate which options they
support.

All-user-attributes option

This option allows any and all user attributes to be specified for registration or update. This includes
all (see below), plus the special argument newUsername.

On the first call for a given username, if the user with “username” does not exist then the user is
created with the specified user attributes. On subsequent calls if the same arguments are specified
then no changes are made to the user. If any argument values change then it is assumed that the
caller wants the relevant attributes updated for the specified user. This allows registrations and
updates of a user with a single call.

 Page 8 of 70

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

 newUsername is a special argument. It should only be specified if the caller wants an
existing username changed to a different value. If this user does not exist yet then this
value is ignored. This value should be kept unspecified if a change to the username is not
desired.

 groupCode and grouppath are special arguments that allow the caller to specify in which
user group to create the user. Only one or the other should be specified.

Simple-user-attributes option

This option allows a limited set of user attributes to be specified for registration only (not for
update). These attributes are:

 username

 password (Optional. Ignored if user already is registered)

 groupCode (Optional. Ignored if user already is registered)

Using this option requires that all user groups in the OLSA environment for the customer are
defined with a unique groupCode.

 Page 9 of 70

General User Attributes

There are several general user attributes that can be initialized and updated. Various APIs in this
document specify these attributes as arguments. See OLSA WSDL for the complete list. Examples of
general user attributes include:

 username

 password

 firstname

 lastname

 Page 10 of 70

Asset Integration Service (AI_)

The Asset Integration Service allows a customer-application to programmatically process assets and
to natively install SkillSoft hosted content. The service provides capabilities for automating the
management of the assets that a customer-application is entitled to. This includes the ability to:

 Get the initial list of ‘entitled’ assets to initialize the customer-application.

 Periodically get the list of newly ‘entitled’, ‘modified’, or ‘not_entitled’ assets to keep the
customer-application up-to-date.

 Access standards compliant metadata (initially for AICC only) for entitled assets to install
into the customer-application.

Assets installed via this service are described by standards compliant metadata with AICC launch
URLs that point back to the OLSA environment. OLSA then mediates access to the SkillSoft hosted
content.

There are several advantages to using the Asset Integration Service:

 The physical management of installed assets into the customer-application is simplified.
The actual physical content is not transferred to the customer-application environment.

 Configuration of player settings and player versions is managed by SkillSoft and is
transparent to the customer.

Supported Content

The Asset Integration Service supports the following SkillSoft asset types:

 CCA courses

 Business Skills courses

 SkillSimulations

 IT courses (e3, Classic)

 Express Guides

 Test Prep Exams

 Final Exams

 Mentoring Assets

 CCT course

 LOT

 Dialogue Recorded Sessions

Asset Integration service assets do not include Referenceware. Topics, Skillbriefs, and Jobaids are
included implicitly with their parent courseware, but they are not individually installable via meta
files generated by the Asset Integration Service.

 Page 11 of 70

Topic launch of natively installed Asset Integration assets

CCA, Business Skills and e3 courses support topic launch. A topic launch allows the end-user to
randomly access a specific topic within the parent course. All usage-data tracking is generated
under the context of the parent course. A topic launch can be performed on a natively installed
course by appending a topicid argument to the usual AICC launch URL. Example of an AICC topic
launch URL:

http://launchURL?AICC_SID=sessionid&AICC_URL=lmsURL&topicid=theTopicIDToLaunch

The http://launchURL is the URL to launch a given course as specified in the AICC .au file for the
relevant course. The text in bold indicates the additional information necessary to launch the
specified topic within the course.

Note: the AU.Web_Launch value would also have to be included if defined (see below).

Required AICC fields for natively installed Asset Integration assets

To install and launch natively installed Asset Integration assets, the following AU file fields must be
supported:

 AU.File_name: This is the launch URL for the asset. It must be specified as an absolute
URL back to the OLSA environment.

 AU.Web_Launch: This lists the launch parameters. Specify additional arguments required
for the launch here.

Enabling Web Accessibility for natively installed Asset Integration assets

Most course types support Web Accessibility (compliance with Section 508). To launch a natively
installed asset with Web Accessibility enabled the following additional argument must be specified
on the usual AICC launch URL. Example of an AICC Web Accessibility enabled launch URL:

http://launchURL?AICC_SID=sessionid&AICC_URL=lmsURL&x508=1

The http://launchURL is used to launch a given asset as specified in the AICC .au file for the
relevant course. The text in bold indicates the additional information necessary to launch with Web
Accessibility enabled.

 Page 12 of 70

http://launchurl/
http://www.section508.gov/
http://launchurl/

AI_InitiateAssetMetaData

The AI_InitiateAssetMetaData function initiates a request to get entitlement status changes since
the update-time and to get the metadata for relevant entitled assets.

Update-time

Entitlement status changes are determined from a given point in time known as the update-time.
The update-time is managed by the OLSA. The update-time is determined by the following
transaction sequence:

 AI_InitiateAssetMetaData (one call to open the transaction)

 AI_PollForAssetMetaData (one or more calls)

 AI_AcknowledgeAssetMetaData (one call to close the transaction)

If a transaction has never been completed the update-time is, effectively, the beginning of time. In
this case all accessible assets are considered new and in the entitled state by
AI_InitiateAssetMetaData.

If a transaction has been completed, the update-time is the time AI_InitiateAssetMetaData was
called during the most recent completed transaction. All assets made accessible since that time are
considered entitled. All assets modified since that time are considered modified. All assets made
inaccessible since that time are considered not_entitled.

A candidate update-time is established every time AI_InitiateAssetMetaData is called. The candidate
update-time is made the new update-time when the corresponding AI_AcknowledgeAssetMetaData
is called.

All vs. Delta Modes

Specify the all mode in the call to AI_InitiateAssetMetaData to start with a “clean slate”. When this
mode is specified then the following information is generated:

 Entitlement status: Identifies all assets currently accessible. These assets are marked with
the status of entitled.

 Metadata: Generates metadata for all entitled assets.

To get any changes in entitlement (all assets whose entitlement status has changed since the
update-time), specify the delta mode in the call to AI_InitiateAssetMetaData. When this mode is
specified then the following information are generated:

 Entitlement status: All assets made accessible since the update-time are marked as
entitled. All assets modified since the update-time are marked modified. All assets made
inaccessible since the update-time will be marked not_entitled.

 Metadata: Metadata for all entitled or modified assets are generated.

 Page 13 of 70

1st call to
AI_InitiateAssetMetaData

starts with mode==all

Periodic call to
AI_InitiateAssetMetaData

with
mode==delta

Start
a

blank
slate
with

OLSA

Wait for next update
interval (e.g., once a

week)

Process entitlements

Call
AI_PollForAssetMetaData

URL
Returned? Wait N minutesNO

Call
AI_AcknowledgeAssetMetaData

YES

Retrieve ZIP file
and process
accordingly

YES

Figure 1: Transaction sequence for AI_InitiateAssetMetaData, AI_PollAssetMetaData, and
AI_AcknowledgeAssetMetaData

The AI_InitiateAssetMetaData function returns a handle that can be used with the
AI_PollForAssetMetaData function to poll the readiness status of the requested information. Note
that calling AI_InitiateAssetMetaData only queues a request to generate the requested information.
A call must be made to AI_PollForAssetMetaData to actually retrieve the requested information.

AICC File Generation for Books

Enabling Books

AICC file generation for books is controlled by a new skp_parameter record call called
enable_books_aicc_files, which supports a value of 0 for disabled or 1 for enabled.

Book Level Launch

You can launch Books through the OLSA Sign-on service. The book level launch supports the
launching of books at the book level and the chapter level using the following parameters:

Book ID - ####

Chunk Launch - ####-####

 Page 14 of 70

AICC Filesets

The requested Asset metadata is packaged in a zip file. The zip file contains an Entitlement Status
file at the top level. The zip file will contain an asset folder for each unique asset. Within each asset
folder there are five AICC files using the naming conventions of assetid.crs, assetid.des, assetid.au,
assetid.cst, and assetid.ort. The image below shows a sample set up:

./olsa_content

./COMM0101

./COMM0102

./COMM0103

COMM0101.CRS, COMM0101.AU, COMM0101.DES, COMM0101, CST, COMM0101.ORT

COMM0102.CRS, COMM0102.AU, COMM0102.DES, COMM0102, CST, COMM0102.ORT

COMM0103.CRS, COMM0103.AU, COMM0103.DES, COMM0103, CST, COMM0103.ORT

_ss_entitlement_status.xml

Figure 2: Sample AICC ZIP File

Entitlement Status File

The entitlement status file lists the entitlement status changes that have occurred since the update-
time. Assets are sorted by ID in alphabetic order. The available entitlement status changes and
recommended actions are listed below.

Entitlement status change Recommended customer-application action

entitled Install the asset

not_entitled Uninstall the asset

modified Asset metadata may have been modified. For example, the title
of the asset may have changed. Take appropriate customer-
application-specific actions to pick up potential meta data
changes.

Table 1: Entitlement Status Changes

 Page 15 of 70

The format of the entitlement status will look like this:

<ENTITLMENT_STATUS>

 <ASSET ID=’someID1’ STATUS=’entitled’/>

 <ASSET ID=’someID2’ STATUS=’not_entitled’/>

 <ASSET ID=’someID3’ STATUS=’modified’/>

 ... etc ...

</ENTITLEMENT_STATUS>

The customer-application can unzip and process the contents of the AICC files in any manner
appropriate for its environment.

Entitlement Exceptions

OLSA saves the most recent change event related to a given asset (installed, uninstalled,
deactivated, activated, or modified). In some circumstances, this can result in unexpected status
values. This generally occurs when two or more change events occur between two transaction
sequences. Use the table below as a guide on what actions to take if an unexpected status value is
returned.

Current State of the Course
in TPLMS

Returned Status Value Action

Installed entitled Ignore or treat as modified

Not Installed modified Treat as entitled

Not installed not_entitled Ignore

Table 2. Entitlement Exceptions

Inputs

 customerId

 initiationMode (all or delta)

 metadataFormat (AICC)

 Page 16 of 70

Outputs

A handle that represents the initiated transaction. This handle is used with the
AI_PollForAssetMetaData function to poll the readiness status of the requested information.

Additional Faults

 RequestAlreadyInProgressFault - A status indicating a AI_InitiateAssetMetaData/
AI_PollForAssetMetaData transaction is already in progress)

 Page 17 of 70

AI_PollForAssetMetaData

The AI_PollForAssetMetaData function polls the readiness status of the entitlement status and
metadata requested using the handle returned by a prior call to AI_InitiateAssetMetaData.

If the metadata is not ready, wait for a reasonable time interval and call this function again with the
same handle value. If the metadata is ready, then an HTTP-based URL to a zip file is returned. An
additional HTTP request using the returned URL is necessary to access the metadata zip file.

Once a given zip file is ready, it remains available until AI_AcknowledgeAssetMetaData is called with
its associated handle. This option is made available so a zip file package can be retrieved again if an
error occurs during transit.

Inputs

 customerId

 handle (returned by a AI_InitiateAssetMetaData call)

Outputs

 URL to a zip file.

Additional Faults

 DataNotReadyYetFault (If the meta data is not ready yet)

AI_AcknowledgeAssetMetaData
The AI_AcknowledgeAssetMetaData function tells OLSA that the specified active
AI_InitiateAssetMetaData/ AI_PollForAssetMetaData/ AI_AcknowledgeAssetMetaData transaction is
completed. It also deletes the zip file created by AI_InitiateAssetMetaData.

This function can also be called by omitting the handle argument. This means it will invalidate any
active AI_InitiateAssetMetaData/ AI_PollForAssetMetaData /AI_AcknowledgeAssetMetaData
transaction. The update-time will not be modified. This effectively performs a reset function so the
customer-application can restart a sequence from the most recently established update-time.

Inputs

 customerId

 handle (returned by a AI_InitiateAssetMetaData call, optional)

Outputs

 None

Additional Faults

 None

 Page 18 of 70

AI_InitiateFullCourseListingReport

The AI_InitiateFullCourseListingReport function retrieves entitlement information. In summary
mode it returns the list of accessible assets. In detail mode it includes additional catalog hierarchy
information such as where in the catalog hierarchy an asset resides. The userName argument is
used to specify the relevant entitlement or assignment (see Entitlement/Assignment). If the
customer does not take advantage of pre-registering users (see User Registration) or making
assignments (see Assignment Types) into OLSA then he may omit the username argument, in
which case all assets in his entitlement should be returned.

The report is returned in HTML or CSV format.

Course Title
Duration
(Hrs:Min)

Course
Number Curriculum

Interviewing basics 2:00 31763_nl Course Curricula/English – US/Business Skills

How to program in C++ 2:00 MSOF21D Course Curricula/English – US/Technical Skills

Managing cultural differences 2:30 COMM0606 Course Curricula/English – US/Business Skills

Communication skills 2:00 COMM0101 Course Curricula/English – US/Business Skills

Table 3: Sample full course listing report (detail mode and CSV format)

 Course title – the title of the asset

 Duration – the estimated duration to complete the course

 Course Number – alpha-numeric designation of the asset, also called the Asset Id

 Curriculum – location in the catalog hierarchy where the asset resides. Specified as a /
delimited path of asset group titles.

 Page 19 of 70

For example, the report shown in Table 2 assumes the following catalog hierarchy is defined:

Course Curricula

English - US

Tech Skills Business Skills

COMM0101 COMM0606 31763_nlMSOF21D

Figure 3: A defined catalog hierarchy

Inputs

 customerId

 reportFormat (HTML or CSV)

 mode (summary or detail)

 username (optional)

Outputs

 A report ID handle. This value should be used with the UTIL_PollForReport function to get
the actual contents of the report.

Additional Faults

 None

 Page 20 of 70

AI_CreateAssetGroup

This function creates an asset group within the defined catalog structure. An asset group may
contain zero or more assets or asset groups. An asset group may only have a single immediate
parent group. Example:

asset1 asset2

Name: A
Title: “Some Title1”

Name: /
Title: n/a

Name: B
Title: “Some Title2”

Name: C
Title: “Some Title3”

Figure 4: Catalog Group Structure

The top of the catalog structure always has the default super parent group /. There are 3 assets
groups under /. The properties of each asset group are listed below:

Name Its Catalog
Path

Title Parent Catalog Path

A /A Some Title1 /

B /B Some Title2 /

C /B/C Some Title3 /B

Table 4. Definition of the Group Structure

The catalog path to each asset is:

 /B/asset1

 /B/asset2

 Page 21 of 70

To create another asset group under C the following arguments can be used:

 Name: D

 Title: Some Title4

 Parent Catalog Path: /B/C

Asset Group names must be unique. Characters in an asset group name are limited to a-z, A-
Z, 0-9 and underscore (_). Asset Group names are case-sensitive. The Asset Group Title can be
any arbitrary text used for display or reporting purposes. See also AI_InitiateMakeChangesVisible.

Inputs

 customerId

 parentCatalogPath

 assetGroupName

 assetGroupTitle

Outputs

 None

Additional Faults

 ObjectExistsFault

AI_EditAssetGroup

This function modifies the properties of an existing asset group. The title or parent of an asset
group can be changed with this command. See also AI_InitiateMakeChangesVisible.

Inputs

 customerId

 catalogPath (for Asset Group to Modify)

 parentCatalogPath (new parent catalog path - optional)

 assetGroupTitle (new group title - optional)

Outputs

 None

Additional Faults

 ObjectNotFoundFault

 Page 22 of 70

AI_DeleteAssetGroup

This function deletes an existing asset group and its subordinate asset groups (if any). Any affected
assets are left dangling if they have no remaining parent asset groups. See also
AI_InitiateMakeChangesVisible.

Inputs

 customerId

 catalogPath (for Asset Group to delete)

Outputs

 None

Additional Faults

 ObjectNotFoundFault

AI_AddAssetToGroup

This function adds assets to any asset group. An asset can be in more than one asset group. See
also AI_InitiateMakeChangesVisible.

Inputs

 customerId

 catalogPath (for relevant Asset Group)

 assetId

Outputs

 None

Additional Faults

 ObjectExistsFault (asset already in group)

 ObjectNotFoundFault (group or asset does not exist)

 Page 23 of 70

AI_RemoveAssetFromGroup

This function removes an asset from any asset group. This function does not delete an asset. See
also AI_InitiateMakeChangesVisible.

Inputs

 customerId

 catalogPath (for relevant Asset Group)

 assetId

Outputs

 None

Additional Faults

 ObjectNotFoundFault (group or asset does not exist)

AI_InitiateMakeChangesVisible

This function will ensure that the effect of all asset group operations have been propagated to all
parts of the OLSA environment. This is a resource-intensive operation and must be used with care.
If you have a series of asset group operations to perform, it is recommended that you invoke this
operation once after all other asset group operations in the series have been performed.

This function initiates the requested operation. The requested operation is not complete until an
execution status report is completed. This function returns a reported handle to query for the
execution status report.

Inputs

 customerId

Outputs

 A report ID handle. This value should be used with the UTIL_PollForReport function to get
the actual contents of the executed status report for this operation.

Additional Faults

 RequestAlreadyInProgressFault (A status indicating an AI_InitiateMakeChangesVisible is
already in progress)

 Page 24 of 70

Search & Learn Service (SL_)

This service allows a customer-application access to SkillSoft Search & Learn. Assets returned by
Search & Learn include all courseware (including Topics, SkillBriefs and Jobaids) and
Referenceware (including Chapters).

Key elements of Search & Learn configurations are entitlement and assignment (see
Entitlement/Assignment definition). Both are used to control what assets a customer-application’s
users have access to via search results. The correct use of entitlement is required to adhere to any
SkillSoft content license agreements (Referenceware in particular).

Search results contain OLSA launch URLs for all assets. A customer-application that chooses to
launch assets using these URLs has all usage data automatically managed by the OLSA
environment. Customer-applications using the Asset Integration Service can launch natively
installed courseware assets. All usage data is automatically managed by the customer-application.

Search Results

Search results generate courseware hits at two levels: course level and topic level. Search results
indicate the relevant course and topic IDs as native id attribute values. The native id attribute value
for a course is the same as the asset id for a given course installed via the Asset Integration
service. The native attribute value for a topic can be used as the topicid value for a topic launch of
the parent course object. A native course launch URL is generated by following the customer-
application’s specific rules for creating a launch URL for installed course objects. A native topic
launch can be created by following the same rules but appending the topicid=nativeIdForTopic to
the URL (see Launch URLs).

Search result sets can be very large. The Search & Learn service supports iterating through search
results in small increments to improve performance. The Search & Learn service also provides utility
functions for getting and defining search configuration values (e.g., available languages, asset
types, bins, and asset details).

 Page 25 of 70

Asset Types
Asset types serve as identification for the different types of content accessible via the OLSA Search
& Learn service. The table below identifies the various asset types.

Asset Type assetType DTYPE

CCA _ss_cca course

Business Skills Course _ss_bs course

JobAids _ss_ja jobaid

Skill Briefs _ss_sb skillbrief

Generic LO _ss_generic custom

Classic Course _ss_classic course

e3 Course _ss_e3 course

Simulation _ss_sim simulation

Mentoring _ss_mentor mentoring

TestPrep _ss_tp testprep

LOT _ss_lot custom

CCT Course _ss_cct custom

Legacy IT _ss_legacy course

ReferenceWare _ss_book book

Express Guides _ss_eg eguide

Instructor Led Training (ILT) _ss_ilt course

Custom Passive Content _cust_pass custom

Custom Courses _cust_course Custom

Project Centers

Practice Labs

Table 5. Asset Types

 Page 26 of 70

Search Terminology

assetType - The kind of asset, e.g., _ss_bs _ss_classic, _ss_book, etc. The Search Server uses this
tag to properly categorize learning objects:

 _ss identifies the asset type as a proprietary SkillSoft learning object

 _cust identifies the asset type as a custom or third-party learning object

DTYPE - DTYPE identifies under which category a learning object will appear as the result of a
search. For example, if a search finds two learning objects, one with assetType=_ss_bs and the
other assetType=_ss_e3, both appear in the Course category.

Search & Learn Asset- An Asset in the Search & Learn service is a superset of the definition used
in the Asset Integration Service. Assets in this service include Topics, JobAids, SkillBriefs and
Referenceware.

SearchAsset ID/Native ID -The search functions return results with attributes named Asset ID
and Native ID. An Asset ID is this context is a combination of the <asset-type>:<native-id> which
we call the SearchAssetID. The Native ID is exactly equivalent to the AssetID referred to
everywhere else in this document.

Trackable asset - An asset that sends tracking data to the LMS.

Non-trackable asset -An asset that does not send any tracking data to the LMS.

Bin - A bin is a container. It can be defined to contain assets of one or more asset types.. Search
results are grouped by bins. The search function should be called with a reasonable binsize value.
There can be significant performance penalties throughout the system for using an excessively large
binsize.

Search Parameter - This refers to a search configuration XML value. It includes items like a list of
bins, with each bin specifying the asset types that are mapped to it. It also contains additional
configuration values like the default bin sizes. It controls among other things what assets are
searched for in a federated search, and how search results are organized.

Entitlement/Assignment- An entitlement is the set of all assets that the customer is allowed
contractual access to. An assignment allows finer grain access to assets within an entitlement, down
to the user-level within OLSA. Entitlement is managed via the Asset Integration service (see
Entitlement). Assignment is managed through the Assignment service (see Assignment Types).

Language - Assets are filterable by a single language as well. The set of available languages will
depend on the caller’s entitlement.

 Page 27 of 70

Result Set - Also know as Search Results, the entire stream of the binned set of assets that match
the specified search criteria. The result set/bin/asset structure appears at a high level like the XML
fragment below.

<SearchResults>

 <bin binname=’someBin1’>

 <asset assetid =’someAsset1’/>

 <asset assetid =’someAsset2’/>

 …

 </bin>

 <bin binname =’someBin2’>

 </bin>

 <bin name=’someBin3’>

 <asset assetid=’someAsset3’/>

 <asset assetid =’someAsset4’/>

 …

 </bin>

 …

</SearchResults>

 Page 28 of 70

SL_FederatedSearch

Given a search string, search results are returned in high-level, customizable categories (bin sets).
During a federated search the search phrase is processed against assets that belong to all bins
specified in the default search parameter.

This function initiates a search and returns the initial portion of the matching result set. The caller
can page through the remainder of the result set by issuing a call to SL_PaginateSearch using the
returned searchid value in the result set. The end of the result set is reached when all bins contain
zero assets.

The set of assets returned are organized in bins. The assets within a bin are returned in decreasing
relevancy ranking order.This function supports the Simple-user-attributes option of the automatic-
user-registration-or-update capability (see User Resgistration).

Inputs:

 customerId

 searchPhrase

 languageCode

 userName

 groupCode (Optional. Ignored if user already is registered)

 password (Optional. Ignored if user already is registered)

 enable508

Outputs:

 A portion of the result set organized as a list of bins.

 Each bin will have its name and various meta data values.

 Each bin will list its associated assets in decreasing relevancy rank order.

 Each asset will include its ID, relevancy rank value and various meta data values.

 See the OLSA WSDL for complete details.

Additional Faults

 None

 Page 29 of 70

SL_DetailedSearch

Given a search string and a high-level category, search results are returned from a single high-level
category (bin). In addition, more detailed information is included for each result. For example, a
course hit might include its topic hits, while a book hit might include its chapter hits.

This function initiates a search and returns the initial portion of the matching result set. The caller
can page through the remainder of the result set by issuing a call to SL_PaginateSearch using the
returned searchid value in the result set. The end of the result set is reached when all bins contain
zero assets.

The returned assets are organized in bins. The assets within a bin are returned in decreasing
relevancy ranking order.This function supports the Simple-user-attributes option of the automatic-
user-registration-or-update capability (see User Resgistration).

Inputs

 customerId

 searchPhrase

 binName

 count (a value between 5-10 is recommended)

 languageCode

 userName

 groupCode (Optional. Ignored if user already is registered)

 password (Optional. Ignored if user already is registered)

 enable508

Outputs

 A portion of the result set organized as a list of bins.

 Each bin will have its name and various metadata values.

 Each bin will list its associated assets in decreasing relevancy rank order.

 Each asset will include its ID, relevancy rank value and various metadata values.

 See the OLSA WSDL for complete details.

Additional Faults

 None

 Page 30 of 70

SL_RelatedSearch

This function performs a related search. A related search means internally generated keywords
associated with the specified asset are used in the search to find related assets. Given an ID for an
asset it will compute its associated keywords and issue a search using these keywords, returning
any related assets. Associated keywords are automatically built from the metadata of the asset.

This function initiates a search and returns the initial portion of the matching result set. The caller
can page through the remainder of the result set by issuing a call to PaginateSearch using the
returned searchid value in the result set. The end of the result set is reached when all bins contain
zero assets.

The set of assets returned are organized in bins. The assets within a bin will be returned in
decreasing relevancy ranking order.This function supports the Simple-user-attributes option of the
automatic-user-registration-or-update capability (see User Resgistration).

Inputs:

 customerId

 searchAssetId

 userName

 groupCode (Optional. Ignored if user already is registered)

 password (Optional. Ignored if user already is registered)

 enable508

Outputs:

 A portion of the result set organized as a list of bins.

 Each bin will have its name and various meta data values.

 Each bin will list its associated assets in decreasing relevancy rank order.

 Each asset will include its ID, relevancy rank value and various meta data values.

 See the OLSA WSDL for complete details.

Additional Faults

 None

 Page 31 of 70

SL_PaginateSearch

This function does not initiate a search but instead continues a search initiated by
SL_FederatedSearch, SL_DetailedSearch or SL_RelatedSearch (specified by the searchId). Note you
may only paginate through one bin at a time.

The set of assets returned are organized in bins. The assets within a bin will be returned in
decreasing relevancy ranking order. The caller can page through the result set by issuing a call to
PaginateSearch using the returned searchid value in the result set. The end of the result set is
reached when all bins contain zero assets.

Inputs:

 customerId

 searchId

 binName

 start

 count (a value between 5-10 is recommended)

 enable508

Outputs:

 A portion of the result set organized as a list of bins.

 Each bin will have its name and various metadata values.

 Each bin will list its associated assets in decreasing relevancy rank order.

 Each asset will include its ID, relevancy rank value and various meta data values.

 See the OLSA WSDL for complete details.

Additional Faults

 None

 Page 32 of 70

SL_GetAttributes

This function returns a variety of attributes that can be used as criteria in various search functions.
The attributes returned are scoped in a fashion similar to how assets returned in search results are
scoped. The attributes are:

 A list of the language codes for all assets entitled to the specified user

 A list of ISO standard codes in the following format <languageCode><countryCode>

<languageCode> is a two letter code in all lower-case.

<countryCode> is a two letter code in all upper-case.

 A list of the asset types for all assets entitled to the specified user

 A list of asset types and their associated printable names (for display purposes)

 The bin to asset type mappings entitled to the user.

A list of bins is returned, with each bin specifying the asset types that are mapped to it. The list of
bins can be used to determine what bins can be searched for a given user with the
SL_DetailedSearch function. This function supports the Simple-user-attributes option of the
automatic-user-registration-or-update capability (see User Resgistration).

Inputs:

 customerId

 username

 groupCode (Optional. Ignored if user already is registered)

 password (Optional. Ignored if user already is registered)

Outputs:

 See the OLSA WSDL for a complete description.

Additional Faults

 None

 Page 33 of 70

SL_GetSearchParameter

This function returns the default Search Parameter configuration for the specified customer.

Inputs:

 customerId

Outputs:

 See the OLSA WSDL for a complete description.

Additional Faults

 None

SL_SetSearchParameter

This function allows the caller to set the default Search Parameter configuration for the specified
customer.

Inputs:

 customerId

 searchParameter (see the OLSA WSDL for a complete description)

Outputs

 None

Additional Faults

 None

 Page 34 of 70

SL_GetAssetDetail

This function provides the metadata for a specified asset plus the metadata for all its subordinate
nested assets. For example, this allows the display of a book’s table of contents.

Inputs:

 customerId

 assetId

 username

 searchId (optional)

Outputs:

 Metadata for the asset (see the OLSA WSDL for a complete description)

Additional Faults

 None

 Page 35 of 70

Assignment Service (AS_)

This service allows a customer-application to control the assignment of Referenceware and
Courseware assets. Assignments control what assets are made visible to a given user or user group
(see also Entitlement/Assignment definition). For example, if a search is issued using a given
keyword OLSA does not return all assets that match the specified keyword. It scopes the results
and returns only those assets that match the specified keyword and are part of the user’s
assignment. Assignment are also used to properly meet any SkillSoft content licensing agreements
(for example, Referenceware).

Assignment Types

 Collection assignment: Assignment of Referenceware collections to users and user
groups. A collection is a predefined grouping of multiple book assets (for example, IT Pro).
Collections are a flat list of books; they are not hierarchical. Assignment of individual books
is not supported.

 Catalog assignment: Assignment of asset groups or individual assets to users and user
groups. An asset group can contain sub-asset groups to create a hierarchical tree structure.

 Default assignment: Users get the default assignment if not given a specific asset or
collection assignment. The default assignment gives each user access to all Referenceware
and Courseware assets that the customer is entitled to.

AS_GetSubscriptionData

This function retrieves information regarding the Referenceware subscription. The subscription is
established outside of OLSA, typically during the initial set-up of OLSA with Referenceware. A
customer with Referenceware access will have at least one subscription. The information returned
will be zero, one, or more the one subscription descriptions.

Each subscription description includes:

 Subscription ID

 List of associated collection descriptions

Each collection description includes:

 Collection ID

 Display name for the collection

Inputs

 customerId

 Page 36 of 70

Outputs

 List of subscription descriptions, each containing a list of collection descriptions (see OLSA
WSDL for complete details).

Additional Faults

 None

AS_SetCollectionAssignment

This function assigns collections to a user group. Any assignment to a user group is inherited by all
users in the user group, including all of its sub groups. A direct assignment to a user group
overrides any assignments inherited from any parent user group. To add a collection to a user
group’s current assignment, you must first get the list of assigned collections, add the collection to
the list, and then assign the entire resulting new list.

Special Collection IDs

The following special collection IDs are also supported:

 ALL the user group is assigned all collections associated with the subscription ID. The
difference between ALL and using a fixed list of collections is that when list of collections
within a subscription changes then ALL will automatically scope the affected user group
accordingly.

 NONE the user group does not get access to any collections regardless of the collection
assignment of its parent user group.

 DEASSIGN the user group has its assignment cleared. This results in the affected user
group inheriting collection assignments from the parent user group (if any).

If a special collection ID is specified no other collection IDs may be specified in the same call. The
command will override any previous SetCollectionAssignment. A GeneralFault is returned if the
specified collection is not in the subscription associated with the user group.

Inputs

 customerId

 list of collectionIds (1 or more)

 groupCode (of user group to assign to)

Outputs

 None

Additional Faults

 None

 Page 37 of 70

AS_SetCollectionAssignmentByUser

This function assigns collections to an individual user. An individual user assignment override any
inherited user group assignments. This command is the same in all respects as
AS_SetCollectionAssignment, but it only affects an individual user. A GeneralFault is returned if the
specified collection is not in the subscription associated with the user.

Inputs

 customerId

 list of collectionIds (1 or more)

 userName

Outputs

 None

Additional Faults

 None

AS_GetCollectionAssignment

This function queries the inherited and direct collection assignment of the specified user group.

Inputs

 customerId

 groupCode (of user group)

Outputs

 If the user group has no assignment (DEASSIGN) then a list with 0 collection elements is
returned.

<collections>

</collections>

If the user group has the special assignment NONE the following is returned:

<collections>

 <collection><id>__NONE__</id></collection>

</collections>

 Page 38 of 70

If the user group has the special assignment ALL the following is returned:

<collections>

 <collection><id>__ALL__</id></collection>

</collections>

If the user group has 1 or more collection assignments then the following is returned:

<collections>

 <collection id=’someCollectionID1’ inherited=’1’/>

 <collection id=’someCollectionID2’/>

 … any additional collection assignments…

</collections>

Note inherited collections assignments are indicated by the presence of the inherited attribute. See
OLSA WSDL for complete description.

Additional Faults

 None

AS_GetCollectionAssignmentByUser

This function queries the inherited and direct collection assignment of the specified individual user.
This command is the same in all respects as AS_GetCollectionAssignment, but it only applies to the
specified user.

Inputs

 customerId

 userName

Outputs

 See AS_GetCollectionAssignment

Additional Faults

 None

 Page 39 of 70

AS_SetCatalogAssignment

This function assigns a catalog path to a user group. A catalog path is a special identifier that
denotes a specific asset group within a courseware hierarchy. A catalog path identifies all
courseware within the specified asset group and its sub asset groups recursively. Any assignment to
a user group is inherited by all users in the user group (done recursively through all sub groups). An
assignment to a user group overrides any assignments inherited from a parent user group.

To add a catalog path to a user group’s current assignment, you first get the list of assigned catalog
paths, add to this list, and then assign the entire resulting new list. This command overrides any
previous AS_SetCatalogAssignment.

Setting catalogPaths to zero deassigns any assignment on the specified user group. A user group
with no assignments inherits its assignment from the first parent user group with a direct catalog
assignment.

Inputs

 customerId

 list of catalogPaths (0, 1 or more)

 groupCode (of user group)

Outputs

 None

Additional Faults

 None

AS_SetCatalogAssignmentByUser

This function assigns a catalog path to an individual user. This command is the same in all respects
as AS_SetCatalogAssignment, but it only applies to the specified user.

Inputs

 customerId

 list of catalogPaths (0, 1 or more)

 userName

 Page 40 of 70

Outputs

 None

Additional Faults

 None

AS_GetCatalogAssignment

This function queries the inherited and direct catalog assignment of the specified user group.

Inputs

 customerId

 groupCode (of user group)

Outputs

 If the user group has no catalog assignment then a list with zero catalog elements is
returned.

<catalogs>

</catalogs>

If the user group has a direct catalog assignment then a list with 1 or more catalog elements
is returned.

<catalogs>

 <catalog id=’someCatalogPathID1’ inherited=’1’/>

 <catalog id=’someCatalogPathID2’/>

 … any additional catalog assignments…

</catalogs>

Note inherited collections assignments are indicated by the presence of the inherited attribute. See
OLSA WSDL for complete description.

Additional Faults

 None

 Page 41 of 70

AS_GetCatalogAssignmentByUser

This function queries the inherited and direct catalog assignment of the specified user. This
command is the same in all respects as AS_GetCatalogAssignment, but it only applies to the
specified user.

Inputs

 customerId

 userName

Outputs

 See AS_GetCatalogAssignment

Additional Faults

 None

 Page 42 of 70

User Management Service (UM_)

This service allows a customer-application to perform various user management functions on the
OLSA environment. These include the capability to:

 create, edit, and delete users

 create, edit, and delete user groups.

A user can be a member of multiple user groups. A user group can contain users and sub-groups. A
user group can be a member of only a single parent user group.

Registering users and defining user groups may be necessary to properly establish catalog and
collection assignments. Assignment can scope the contents of Search & Learn results for individual
users. Assignment can also be used to properly meet any SkillSoft content licensing agreements
(Referenceware in particular).

There are also some functions defined in the OLSA Web Services that support automatic user
registration. This capability automatically creates a user (from provided user-credentials) if the user
does not yet exist in the OLSA environment. If this is not sufficient to meet your needs then the
User Management service provide additional capabilities.

UM_CreateUser

This function creates a new user in the OLSA environment. A user is created in a single group via
this API.

Inputs

 customerId

 See General User Attributes for the remaining agreements

Outputs

 None

Additional Faults

 ObjectExistsFault (user already exists)

 Page 43 of 70

UM_EditUser

This function edits various attributes of an existing user in the OLSA environment. A user can only
be moved to a single different group through this API. A user can be deactivated with this function
by setting the active field to zero (0). This disables the user but retains any of the usage data
managed by OLSA.

Inputs

 customerId

 newUserName

 See General User Attributes for the remaining arguments

Outputs

 None

Additional Faults

 ObjectNotFoundFault (user does not exist)

UM_DeleteUser

This function deletes an existing user from the OLSA environment. If the specified user is a member
of multiple groups, that user is deleted from all user groups. Deleting a user also deletes any
associated usage data managed by OLSA.

Inputs

 customerId

 userName

Outputs

 None

Additional Faults

 ObjectNotFoundFault (user does not exist)

 Page 44 of 70

UM_CreateUserGroup

This function creates a new user group in the OLSA environment. A user group can only be created
in a single parent group.

Inputs

 customerId

 groupCode

 groupTitle

 parentGroupCode

Outputs

 None

Additional Faults

 ObjectExistsFaults (user group already exists)

UM_EditUserGroup

This function edits an existing user group in the OLSA environment. A user group can only be
moved to a single different group.

Inputs

 customerId

 groupCode

 newGroupCode (internally this will be used as the group name as well) (optional)

 newParentGroupCode (optional)

 newTitle (optional)

Outputs

 None

Additional Faults

 ObjectNotFound (user group does not exist)

 Page 45 of 70

UM_DeleteUserGroup

This function deletes an existing user group in the OLSA environment. All sub-user groups (if any)
are deleted recursively. Any affected users are deleted if they have no remaining parent user group.
All usage data for the user is deleted as well.

Inputs

 customerId

 groupCode

Outputs

 None

Additional Faults

 ObjectNotFound (user group does not exist)

UM_AddUserToGroup

This function adds a user to an existing user group in the OLSA environment. A user can be added
to multiple groups.

Inputs

 customerId

 userName

 List of groupCodes

Outputs

 None

Additional Faults

 ObjectExistsFault (user in already in group)

 ObjectNotFoundFault (user or group not found)

 Page 46 of 70

UM_RemoveUserFromGroup

This function removes a user from an existing user group(s) in the OLSA environment. A user must
always be a member of at least one group. This command does not delete the user.

Inputs

 customerId

 userName

 List of groupCodes

Outputs

 None

Additional Faults

 ObjectNotFoundFault (user not in group, or group does not exist)

UM_ InitiateUserListingByGroupReport

This function retrieves information about the user population registered in the OLSA environment.
The user population to list can be specified with the following options:

 allUsers (when true it means all top-level groups will be selected and subGroupName must
be empty)

 subGroupName (when non-empty it means use the named subgroup, allUsers must be set to
false)

 includeSubGroups (true means include all users in the selected group’s subgroups)

 listBySubgroups (true means organize users by sub groups)

 Page 47 of 70

The report is returned in HTML or CSV format. Listed below is a sample user listing by group CSV
report fragment with allUsers, includeSubGroups and listBySubgroups all set to true. Not all CSV
fields are shown.

GroupTitle GroupPath groupCode LoginName LastName FirstName

SkillSoft /SkillSoft SkillSoft Admin Admin Admin

SkillSoft /SkillSoft SkillSoft Smith1 Smith1 John

HR Team /SkillSoft/HR
Team

HR_TEAM Jones1 Jones1 Fred

Books24x7 /Books24x7 Books24x7 Jones2 Jones2 Bill

Books24x7 /Books24x7 Books24x7 Smith2 Smith2 Sally

Table 6. Sample User Listing by Group Report

The above reports assumes the following user population that has been registered into the OLSA
environment.

/

Books24x7
SkillSoft

HR TeamJones2 Smith2 Smith1

Jones1

Admin

Figure 5. Sample User Hierarchy

Inputs

 customerId

 allUsers (true or false)

 subGroupName (non-empty only if allUsers==false)

 includeSubGroups (true or false)

 listBySubgroups (true or false)

 reportFormat (HTML or CSV)

 Page 48 of 70

Outputs

 A report ID handle. This value should be used with the UTIL_PollForReport function to get
the actual contents of the report.

Additional Faults

 None

 Page 49 of 70

Offline Integration Service (OF_)

This service allows a customer-application, e.g., a non AICC compliant portal, to manage access to
the following launch-related capabilities:

 Perform the download of the SkillSoft Course Manager (SCM) application and an asset for
offline play.

 Perform the upload of offline usage data to be automatically managed by the OLSA
environment.

Offline usage data can only be sent back to the OLSA Environment. A customer that needs to keep
usage data between the customer-application and the OLSA environment synchronized may use the
Usage Data Synchronization service.

OF_GetDownloadAssetUrl

This function returns a launch URL that return client-side logic that activates the download of the
specified asset for offline play. This client side logic includes SCM detection logic, if the SCM is not
installed then it will initiate a SCM installation sequence on the client. Note the limitations on launch
URLs.

Inputs

 customerId

 assetId

 username

 x508

Outputs

 A URL that will download the specified asset with the specified user as its session context.

Additional Faults

 DownloadNotEnabledFault: If the specified asset is not downloadable.

 Page 50 of 70

OF_GetUploadOfflineDataUrl

This function returns a launch URL that returns client-side logic that uploads usage data to the
OLSA environment that was generated during offline play of downloaded assets. This client side
logic includes SCM detection logic (if the SCM is not installed then no operation is performed). Note
the limitations on launch URLs.

Inputs

 customerId

 userName

Outputs

 A URL that will perform an SCM upload using the specified user as its session context

Additional Faults

 None

 Page 51 of 70

Usage Data Synchronization Service (UD_)

The Usage Data Synchronization service allows a customer-application to access usage data from
the OLSA environment for content managed via the Asset Integration Service. This allows a
customer-application to keep the usage data for a given asset synchronized with the same asset in
the OLSA environment.

Situations where a customer-application may find a need for this service are when the following
value-add learning services are used and usage data is automatically managed by the OLSA
environment:

 Offline usage data uploaded with the Offline Integration service

 Assets launched using Search & Learn launch URLs

 Assets launched from UI screens generated via the SignOn Service.

The capabilities defined in this service include:

 Accessing all usage data for a single user accessing a single asset

 Accessing a custom report for one or more users.

UD_GetAssetResults

This function returns all of the usage results for a user accessing a specific asset. If the asset is not
specified the function returns results for all courses taken by the specified user. If
summaryLevel=true only course level results are returned. If summaryLevel=false, course and
lesson level results are returned (for courses that support lesson level results).

Inputs:

 customerId

 userName

 assetId (optional)

 summaryLevel (true or false)

Outputs:

 A list of result elements. See the OLSA WSDL for complete details.

Additional Faults

 NoResultsAvailableFault: If there are no results to return for the specified user.

 Page 52 of 70

UD_InitiateCustomReportByUsers

This function initiates the custom report to retrieve usage data for specified users. If username,
firstname, and lastname are all omitted then all users are processed. If username, firstname or
lastname are specified then all users that have a corresponding prefix-match (e.g., username of
“smith” will match usernames “smith1” and “smith2”) are processed.

Usage data can be further filtered with the optional start date, end date and date modifier
arguments.

Inputs:

 customerId

 Username (optional)

 Firstname (optional)

 Lastname (optional)

 Start date (optional)

 End date (optional)

 Date modifier (one of the following, ignored if start and end dates are both omitted)

o “any” (any access date, this is the default)

o “first” (first access date only)

o “most” (most recent access date only)

o “completion” (completion date only)

 listBy (one of the following)

o “user” (details by user)

o “asset” (details by asset)

 includeDeactivatedUsers (default is true)

 reportFormat (HTML or CSV)

Outputs:

 A report ID handle. This value should be used with the UTIL_PollForReport function to get
the actual contents of the report.

Additional Faults

 None

 Page 53 of 70

UD_InitiateCustomReportByUserGroups

This function initiates the custom report to retrieve usage data by user group. Usage data can be
further filtered with the optional start date, end date and date modifier arguments.

Inputs:

 CustomerId

 Group (string, if this starts with a “/” then it is assumed to be a user group path. Otherwise
it will be interpreted as a group code)

 Start date (optional)

 End date (optional)

 Date modifier (one of the following, ignored if start and end dates are both omitted)

o “any” (any access date, this is the default)

o “first” (first access date only)

o “most” (most recent access date only)

o “completion” (completion date only)

 listBy (one of the following)

 user (details by user)

 asset (details by asset)

 includeDeactivatedUsers (default is true)

 includeSubgroups (default is true)

 reportFormat (HTML or CSV)

Outputs:

 A report ID handle. This value should be used with the UTIL_PollForReport function to get
the actual contents of the report.

Additional Faults

 None

 Page 54 of 70

SignOn Service (SO_)

This service allows users direct access into the SkillPort platform environment. This includes the
ability to seamlessly login and land on the SkillPort Home, Catalog or My Plan pages, as well as a
specified course summary screen. Usage data generated from assets launched through SkillPort
sessions are synchronized automatically with the OLSA Environment

SO_GetMultiActionOnSignOnURL

This function returns a launch URL that lands the specified user into the SkillPort environment’s
Home, Catalog, or My Plan screen. It can also land the user in a summary screen for a specified
asset or launch the specified asset itself.

Note the limitations on launch URLs. This function supports the All-user-attributes option of the
automatic-user-registration-or-update capability (see User Registration).

Inputs

 customerId

 actionType (home, myplan, catalog, summary, launch)

 assetId (asset id for a course, this must be non empty only for action=summary and
action=launch)

 newUserName

 See General User Attributes for remaining arguments

 enable508 (default is false)

Outputs

One of the following:

 A URL that will land the user on the Home page of the SkillPort environment.

 A URL that will land the user on the My Plan page of the SkillPort environment.

 A URL that will land the user on the Catalog page of the SkillPort environment.

 A URL that will land the user on the specified Course Summary page of the SkillPort
environment.

 A URL that will launch the specified asset.

Additional Faults

 None

 Page 55 of 70

Utility Service (UTIL_)

This section defines the Utility Service and its associated functions.

UTIL_PollForReport

This function retrieves the URL for the completed report given a report ID (for example returned by
UD_InitiateCustomReportByUsers).

Inputs

 customerId

 reportId

Outputs

 URL to a report file.

Additional Faults

 DataNotReadyYetFault (If the report file is not ready yet)

 ReportDoesNotExistFault (If the report corresponding to the reportId does not exist)

UTIL_GetMentoringUrl

If an asset (for example a Business Skills course) has mentoring enabled, this function returns a
launch URL that can be used to access the mentoring service using the given asset as the session
context. This is different than a mentoring asset that can be installed and launched like any other
asset via the Asset Integration Service. Note the limitations on launch URLs.

Inputs

 customerId

 usernName

 assetId (for the asset that has mentoring enabled)

Outputs

 A URL that will launch the mentoring screen using the specified asset and user at its session
context.

Additional Faults

 MentoringNotEnabledFault: If the specified asset does not have mentoring enabled.

 Page 56 of 70

bUTIL_DeleteReport

This function deletes a completed report given a report ID (for example returned by
UD_InitiateCustomReportByUsers).

Inputs

 customerId

 reportId

Outputs

 None

Additional Faults

 DataNotReadyYetFault (If the report file is not ready yet)

 ReportDoesNotExistFault (If the report corresponding to the reportId does not exist)

 Page 57 of 70

Configuration Service (CF_)

This service allows a customer-application to configure the behavior of content installed via the
Asset Integration service.

CF_GetAiccSettings

This function queries the currently established AICC settings that are not implemented as player
properties. This setting controls what value is generated into the Max_normal field of the
appropriate AICC .crs file:

 max_normal: This controls the max_normal value for all content (integer: 1-99)

These settings control what values are generated in the specified fields for the putParam command
for special content (e.g. Mentoring):

 Lesson_status: This controls the Lesson_status value (string: “not attempted”,
“incomplete”, “completed”, “browsed”)

 Time: This controls the time value (any time value of the form hh:mm:ss)

This setting controls whether SkillSoft Course Player (SCP)-based content is launched using a
signed applet or not:

 enable_signed_player_applets (0 or 1)

Inputs

 customerId

Outputs

 The response will be returned in the following format:

<aicc_settings>

 <file_crs>

 <max_normal>…</max_normal>

 </file_crs>

<putparam>

 <lesson_status>…</lesson_status>

 <time>…</time>

</putparam>

 < enable_signed_player_applets> .. </ enable_signed_player_applets>

</aicc_settings>

 Page 58 of 70

 See OLSA WSDL for complete description.

Additional Faults

 None

CF_SetAiccSettings

This function modifies the currently established AICC settings that are not implemented as player
properties. To change a particular setting value, the caller must first invoke CF_GetAiccFileSettings.
The caller must then update the appropriate setting value(s) in the XML response from
CF_GetAiccFileSettings. This updated XML must be specified in its entirety as the aiccFileSettings
argument below (changed as well as unchanged values) in the call to CF_SetAiccFileSettings.

See CF_GetAiccSettings for allowed types and ranges for the supported AICC settings. Additional
tags cannot be specified in this call. Only those tags supported by CF_GetAiccSettings are allowed.

Inputs

 customerId

 aiccSettings (see CF_GetAiccSettings and OLSA WSDL for more details).

Outputs

 None

Additional Faults

 None

CF_GetPlayerProperties

This function queries the currently established SkillSoft Course Player (SCP) properties. These
properties control what launch configuration values are transmitted by OLSA to the SCP for any
SCP-based content (for example, Business Skills, IT) launched via the Asset Integration Referral
Object launch URL mechanism.

See the SCP documentation for the description of available properties. Each property is described
with a property tag. The property tag has as attributes:

 The name of the property (read-only)

 The type of the property (read-only)

 The enable status of the property. 1 means the property value will be transmitted by OLSA
to the Player. 0 means the property value will not be transmitted.

 The tag value is the value of the property.

 Page 59 of 70

Inputs

 customerId

Outputs

 The response is returned in the following format:

<player_properties>

 <property name=”…name of property…”

 type=”text|integer|float|boolean”

 enabled=”0|1”>…value for property…</property>

 … more properties …

</player_properties>

See OLSA WSDL for complete description.

Additional Faults

 None

CF_SetPlayerProperties

This function modifies the currently established player properties. These properties control what
launch configuration values are transmitted by OLSA to the SCP for any SCP-based content (e.g.,
Business Skills, IT) launched via the Asset Integration Referral Object launch URL mechanism. To
get the list of available properties the caller must invoke CF_GetPlayerProperties.

To set one or more available properties the caller should extract the desired subset of properties
from the CF_GetPlayerProperties XML response. For each property the caller wants to “set”, update
the property’s value and enabled status. This modified subset XML must then be specified as the
playerProperties argument below in the call to CF_SetPlayerProperties.

A property must have its enabled attribute set to 1 for the value to be sent to the Player at launch
time. The caller must not add properties beyond the available set. The caller must not change the
name or type of an available property.

For example, if CF_GetPlayerProperties returns as a response:

<player_properties>

 <property name=”a” type=”text” enabled=”0”>item</property>

 <property name=”b” type=”integer” enabled=”0”>99</property>

 <property name=”c” type=”boolean” enabled=”0”>true</property>

</player_properties>

 Page 60 of 70

You can set the property “b” to the value 100 and enable it by sending this as the SCP properties
value to CF_SetPlayerProperties:

<player_properties>

 <property name=”b” type=”integer” enabled=”1>100</property>

</player_properties>

Inputs

 customerId

 playerProperties (see CF_GetPlayerProperties and OLSA WSDL for more details).

Outputs

 None

Additional Faults

 None

CF_GetSkillSimProperties

This function queries the currently established SkillSim player properties. These properties control
what launch configuration values are transmitted by OLSA to the SimPlayer for any SkillSim-based
content launched via the Asset Integration Referral Object launch URL mechanism.

See the SkillSim documentation for the description of available properties. Each property is
described with a property tag. The property tag has the following attributes:

 The name of the property (read-only)

 The type of the property (read-only)

 The enable status of the property. 1 means the property value will be transmitted by OLSA
to the SkillSim Player. 0 means the property value will not be transmitted.

 The tag value is the value of the property.

Inputs

 customerId

Outputs

 The response will be returned in the following format:

 Page 61 of 70

<skillsim_properties>

 <property name=”…name of property…”

 type=”text| integer|float |boolean”

 enabled=”0|1”>…value for property…</property>

 … more properties …

</skillsim_properties>

See OLSA WSDL for complete description.

Additional Faults

 None

CF_SetSkillSimProperties

This function modifies the currently established SkillSim player properties. These properties control
what launch configuration values are transmitted by OLSA to the SkillSim Player for any SkillSim-
based content launched via the Asset Integration Referral Object launch URL mechanism. To get the
list of available properties the caller must invoke CF_GetSkillSimProperties.

To set one or more available properties the caller should extract the desired subset of properties
from the CF_GetSkillSimProperties XML response. For each property to “set”, update the property’s
value and enabled status. This modified subset XML must then be specified as the skillsimProperties
argument below in the call to CF_SetSkillSimProperties.

A property must have its enabled attribute set to 1 for the value to be sent to the SkillSim Player at
launch time. The caller must not add properties beyond the available set. The caller must not
change the name or type of an available property.

For example, if CF_GetSkillSimProperties returns as a response:

<skillsim_properties>

 <property name=”a” type=”text” enabled=”0”>item</property>

 <property name=”b” type=”integer” enabled=”0”>99</property>

 <property name=”c” type=”boolean” enabled=”0”>true</property>

</skillsim_properties>

You can set the property “b” to the value 100 and enable it by sending this as the playerProperties
value to CF_SetSkillSimProperties:

<skillsim_properties>

 <property name=”b” type=”integer” enabled=”1>100</property>

</skillsim_properties>

 Page 62 of 70

Inputs

 customerId

 skillsimProperties (see CF_GetSkillSimProperties and OLSA WSDL for more details).

Outputs

 None

Additional Faults

 None

 Page 63 of 70

Open Learning Services Portal (OLSP)

Overview
The Open Learning Services Portal (OLSP) is a front-end application that allows you to access a
subset of the OLSA Web Services without interacting directly with the APIs. Use this portal to view
and modify configuration settings specific to your OLSA implementation.

Login Page
Login validates that you have access to the OLSA system. Your User Name and Password are
provided by SkillSoft.

Note: OLSP requires cookies to be enabled in your client browser.

Figure 6: Login Page

 Page 64 of 70

AICC Configuration Options
The AICC Configurations Options page is the default page after login. Use the AICC Configuration
Options page to:

 Set the Lesson Status and Session Duration for non-AICC conformant content.

 Set the mastery_score and aicc_version parameters in the generated AICC files.

Figure 7: AICC Configuration Options

Lesson Status
All non-AICC conformant content communicates the selected Lesson Status to the LMS. This is a
required value. Select one of the following options:

 Completed

 Not Attempted

 Browsed

 Incomplete

 Page 65 of 70

Session Duration
All non-AICC conformant content communicates the Lesson Status to the LMS. This is a required
value that must be in HH:MM:SS format.

Mastery Score
The Mastery Score value is written into the generated AICC files. A user’s score must meet or
exceed the specified value in order for the course to be marked complete. This is a required value
that can range from 0-100.

AICC Version
The AICC version value is written into the generated AICC files. This is a required value. Select one
of the following options:

 2.2

 3.5

OLSA Calls

When you click Submit, the OLSP makes the following OLSA calls:

 CF_Get_Aicc_Settings

 CF_Set Aicc_Settings

 CF_Get_Player_Properties

 CF_Set_Player_Properties

 CF_Get SkillSim_Properties

 CF_Set SkillSim_Properties

 Page 66 of 70

Course Catalog Hierarchy
Use the Course Catalog Hierarchy page to generate a FullCourseListing report that describes all of
the courses and assets you are entitled to. Completed reports are copied to the OLSP server or a
specified network file location.

Figure 8: Course Catalog Hierarchy

Generate a Course Hierarchy Report
Select a Format Option (HTML or CSV16,UTF-16 format) and the Level of Detail (Summary or
Detail) for the report and click Create Hierarchy to generate the report. The new report is added
to the Generated Files list at the bottom of the page.

The filenames in the Generated Files list reflect the level of detail and format of the report (for
example: detail report.html or summary report.csv). The Generated Files list also displays the date
and time the report was submitted and when it was completed.

If a Report has not been finished, the date completed field will read In progress. Click Refresh to
update the status of pending reports. A report is completed when the date and time appear in the
Date Completed field.

 Page 67 of 70

To delete a report, click the Selected Files checkbox for that report. You can use the Select All
button to select all files in the list or the Select None button to deselect all files in the list. Click
Delete Files to remove the selected reports from the OLSP server or file location.

OLSA Calls

The OLSP makes a series of OLSA calls from this page.

 Click Create Hierarchy: AI_InitiateFullCourseListingReport

 Click Refresh: UTIL_PollForReport

 Click Delete Files: UTIL_DeleteReport

 Page 68 of 70

Download Course Metadata
Use the Download Course Metadata page to generate AICC metadata files. The metadata files for
entitled assets are compressed into a zip file for download. There are two options for downloading
metadata:

 Updated Metadata: downloads AICC filesets for newly released assets or for assets that have
been updated since the last download.

 All Metadata: downloads all entitled AICC filesets.

Figure 9: Download Course Metadata

 Page 69 of 70

Select a Download Option and click Download Metadata. The new zip file is added to the
Generated Files list at the bottom of the page. The Download Type column indicates if the zip
contains all metadata or updated metadata. The Generated Files list also displays the date and time
the request was submitted and when it was completed.

If a metadata zip has not been finished, the date completed field will read In progress. Click
Refresh to update the status of pending files. A file is completed when the date and time appear in
the Date Completed field.

To delete a file, click the Selected Files checkbox for that file. You can use the Select All button to
select all files in the list or the Select None button to deselect all files in the list. Click Delete Files
to remove the selected files from the OLSP server or file location.

OLSA Calls

When you click Download Metadata, the OLSP makes the following OLSA calls to complete the
transaction:

 AI_InitiateAssetMetaData

 AI_PollForAssetMetaData

 AI_AcknowledgeAssetMetaData

 Page 70 of 70

	Introduction 5
	What is OLSA? 5
	Technical Considerations 6
	Web Services and Launch URLs 7
	SOAP Faults (Error conditions) 7
	Synchronizing Server Clocks 8
	Automatic User Registration or Update 8
	Asset Integration Service (AI_) 11
	AI_InitiateAssetMetaData 13
	AI_PollForAssetMetaData 18
	AI_AcknowledgeAssetMetaData 18
	AI_InitiateFullCourseListingReport 19
	AI_CreateAssetGroup 21
	AI_EditAssetGroup 22
	AI_DeleteAssetGroup 23
	AI_AddAssetToGroup 23
	AI_RemoveAssetFromGroup 24
	AI_InitiateMakeChangesVisible 24
	Search & Learn Service (SL_) 25
	SL_FederatedSearch 29
	SL_DetailedSearch 30
	SL_RelatedSearch 31
	SL_PaginateSearch 32
	SL_GetAttributes 33
	SL_GetSearchParameter 34
	SL_SetSearchParameter 34
	SL_GetAssetDetail 35
	Assignment Service (AS_) 36
	AS_GetSubscriptionData 36
	AS_SetCollectionAssignment 37
	AS_SetCollectionAssignmentByUser 38
	AS_GetCollectionAssignment 38
	AS_GetCollectionAssignmentByUser 39
	AS_SetCatalogAssignment 40
	AS_SetCatalogAssignmentByUser 40
	AS_GetCatalogAssignment 41
	AS_GetCatalogAssignmentByUser 42
	User Management Service (UM_) 43
	UM_CreateUser 43
	UM_EditUser 44
	UM_DeleteUser 44
	UM_CreateUserGroup 45
	UM_EditUserGroup 45
	UM_DeleteUserGroup 46
	UM_AddUserToGroup 46
	UM_RemoveUserFromGroup 47
	UM_ InitiateUserListingByGroupReport 47
	Offline Integration Service (OF_) 50
	OF_GetDownloadAssetUrl 50
	OF_GetUploadOfflineDataUrl 51
	Usage Data Synchronization Service (UD_) 52
	UD_GetAssetResults 52
	UD_InitiateCustomReportByUsers 53
	UD_InitiateCustomReportByUserGroups 54
	SignOn Service (SO_) 55
	SO_GetMultiActionOnSignOnURL 55
	Utility Service (UTIL_) 56
	UTIL_PollForReport 56
	UTIL_GetMentoringUrl 56
	bUTIL_DeleteReport 57
	Configuration Service (CF_) 58
	CF_GetAiccSettings 58
	CF_SetAiccSettings 59
	CF_GetPlayerProperties 59
	CF_SetPlayerProperties 60
	CF_GetSkillSimProperties 61
	CF_SetSkillSimProperties 62
	Open Learning Services Portal (OLSP) 64
	Overview 64
	Login Page 64
	AICC Configuration Options 65
	Course Catalog Hierarchy 67
	Download Course Metadata 69
	Introduction
	What is OLSA?
	Why Integrate Using OLSA?

	 Technical Considerations
	 Web Services and Launch URLs
	SOAP Faults (Error conditions)
	 Synchronizing Server Clocks
	Automatic User Registration or Update

	Asset Integration Service (AI_)
	 AI_InitiateAssetMetaData
	AICC File Generation for Books
	Current State of the Course in TPLMS

	 AI_PollForAssetMetaData
	AI_AcknowledgeAssetMetaData
	 AI_InitiateFullCourseListingReport
	 AI_CreateAssetGroup
	AI_EditAssetGroup
	AI_DeleteAssetGroup
	AI_AddAssetToGroup
	 AI_RemoveAssetFromGroup
	AI_InitiateMakeChangesVisible

	Search & Learn Service (SL_)
	Search & Learn Asset- An Asset in the Search & Learn service is a superset of the definition used in the Asset Integration Service. Assets in this service include Topics, JobAids, SkillBriefs and Referenceware.
	SearchAsset ID/Native ID -The search functions return results with attributes named Asset ID and Native ID. An Asset ID is this context is a combination of the <asset-type>:<native-id> which we call the SearchAssetID. The Native ID is exactly equivalent to the AssetID referred to everywhere else in this document.
	SL_FederatedSearch
	Additional Faults

	 SL_DetailedSearch
	Inputs
	Outputs
	Additional Faults

	 SL_RelatedSearch
	Additional Faults

	 SL_PaginateSearch
	Additional Faults

	 SL_GetAttributes
	Additional Faults

	 SL_GetSearchParameter
	Additional Faults

	SL_SetSearchParameter
	Outputs
	Additional Faults

	 SL_GetAssetDetail
	Additional Faults

	Assignment Service (AS_)
	AS_GetSubscriptionData
	Inputs
	Outputs
	Additional Faults

	AS_SetCollectionAssignment
	Inputs
	Outputs
	Additional Faults

	 AS_SetCollectionAssignmentByUser
	Inputs
	Outputs
	Additional Faults

	AS_GetCollectionAssignment
	Inputs
	Outputs
	Additional Faults

	AS_GetCollectionAssignmentByUser
	Inputs
	Outputs
	Additional Faults

	 AS_SetCatalogAssignment
	Inputs
	Outputs
	Additional Faults

	AS_SetCatalogAssignmentByUser
	Inputs
	 Outputs
	Additional Faults

	AS_GetCatalogAssignment
	Inputs
	Outputs
	Additional Faults

	 AS_GetCatalogAssignmentByUser
	Inputs
	Outputs
	Additional Faults

	User Management Service (UM_)
	UM_CreateUser
	Inputs
	Outputs
	Additional Faults

	 UM_EditUser
	Inputs
	Outputs
	Additional Faults

	UM_DeleteUser
	Inputs
	Outputs
	Additional Faults

	 UM_CreateUserGroup
	Inputs
	Outputs
	Additional Faults

	UM_EditUserGroup
	Inputs
	Outputs
	Additional Faults

	 UM_DeleteUserGroup
	Inputs
	Outputs
	Additional Faults

	UM_AddUserToGroup
	Inputs
	Outputs
	Additional Faults

	 UM_RemoveUserFromGroup
	Inputs
	Outputs
	Additional Faults

	UM_ InitiateUserListingByGroupReport
	Inputs
	Outputs
	Additional Faults

	Offline Integration Service (OF_)
	OF_GetDownloadAssetUrl
	Inputs
	Outputs
	Additional Faults

	 OF_GetUploadOfflineDataUrl
	Inputs
	Outputs
	Additional Faults

	Usage Data Synchronization Service (UD_)
	UD_GetAssetResults
	Additional Faults

	 UD_InitiateCustomReportByUsers
	Additional Faults

	 UD_InitiateCustomReportByUserGroups
	Additional Faults

	SignOn Service (SO_)
	SO_GetMultiActionOnSignOnURL
	Inputs
	Outputs
	Additional Faults

	Utility Service (UTIL_)
	UTIL_PollForReport
	Inputs
	Outputs
	Additional Faults

	UTIL_GetMentoringUrl
	Inputs
	Outputs
	Additional Faults

	 bUTIL_DeleteReport
	Inputs
	Outputs
	Additional Faults

	Configuration Service (CF_)
	CF_GetAiccSettings
	Inputs
	Outputs
	Additional Faults

	CF_SetAiccSettings
	Inputs
	Outputs
	Additional Faults

	CF_GetPlayerProperties
	Inputs
	Outputs
	Additional Faults

	CF_SetPlayerProperties
	Inputs
	Outputs
	Additional Faults

	CF_GetSkillSimProperties
	Inputs
	Outputs
	Additional Faults

	CF_SetSkillSimProperties
	Outputs
	Additional Faults

	Open Learning Services Portal (OLSP)
	Overview
	Login Page
	 AICC Configuration Options
	 Course Catalog Hierarchy
	 Download Course Metadata

